Perturbations of Laguerre–Hahn class linear functionals by Dirac delta derivatives

نویسندگان

  • Herbert Dueñas
  • Luis E. Garza
چکیده

Se estudian perturbaciones de funcionales lineales (tanto en la recta real como en el ćırculo unidad) que pertenecen a la clase de Laguerre–Hahn. En particular, se obtiene una expresión para las funciones de Stieltjes y Carathéodory asociadas con los funcionales perturbados y se muestra que se preserva la clase de Laguerre–Hahn. Finalmente, se discute que bajo la transformación de Szegő la clase se mantiene invariante.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Building some symmetric Laguerre-Hahn functionals of class two at most through the sum of symmetric functionals as pseudofunctions with a Dirac measure at origin

We show that if v is a symmetric regular Laguerre-Hahn linear form (functional), then the linear form u defined by u = −λx−2v + δ0 is also regular and symmetric LaguerreHahn linear form for every complex λ except for a discrete set of numbers depending on v. We explicitly give the coefficients of the second-order recurrence relation, the structure relation of the orthogonal sequence associated ...

متن کامل

The Modification of Classical Hahn Polynomials of Adiscrete Variable

We consider a modiication of moment functionals for the Hahn classical polynomials of a discrete variable by adding two mass points at the ends of the interval, i.e., in x = 0 and x = N 1. We obtain the resulting orthogonal polynomials and identify them as hypergeometric functions. The corresponding three term recurrence relation and tridiagonal matrices are also studied. x1 Introduction. The s...

متن کامل

On the Properties for Modifications of Classical Orthogonal Polynomials of Discrete Variables.1

We consider a modiication of moment functionals for some classical polynomials of a discrete variable by adding a mass point at x = 0. We obtain the resulting orthogonal polynomials, identify them as hypergeometric functions and derive the second order diierence equation which these polynomials satisfy. The corresponding tridiagonal matrices and associated polynomials were also studied. x1 Intr...

متن کامل

The Fourth-order Difference Equation Satisfied by the Associated Orthogonal Polynomials of the Delta-Laguerre-Hahn Class

Starting from the D!-Riccati Diierence equation satissed by the Stieltjes function of a linear functional, we work out an algorithm which enables us to write the general fourth-order diierence equation satissed by the associated of any integer order of orthogonal polynomials of the-Laguerre-Hahn class. Moreover, in classical situations (Meixner, Charlier, Krawtchouk and Hahn), we give these dii...

متن کامل

A FUZZY VERSION OF HAHN-BANACH EXTENSION THEOREM

In this paper, a fuzzy version of the analytic form of Hahn-Banachextension theorem is given. As application, the Hahn-Banach theorem for$r$-fuzzy bounded linear functionals on $r$-fuzzy normedlinear spaces is obtained.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012